My SNES troubleshooting workflow for “black screen of death” systems

SPOILER ALERT: They ALL have dead CPUs.

SPOILER ALERT: They ALL have dead CPUs.

I have dozens of these black screen systems. I have a basic flowchart for troubleshooting all SNESes in my head. It’s simple and progresses from the easiest fixes to the most difficult. But I’ll spoil it and reveal ahead of time that they almost all have dead CPUs that need to be replaced. It’s never the easy stuff.

The first steps are disassembly and cleaning the housing. Of course, the latter doesn’t fix anything, but time is money, and by cleaning the housing first I can leave it to dry while I work on the motherboard itself.

Step one is to clean the cartridge slot with a toothbrush and 91% alcohol. 99% is better but it’s more expensive and harder to find. 91% is good enough. Most folks recommend wrapping a credit card in a cloth, dipping it in alcohol, and then inserting and removing it repeatedly to clean the cartridge slot, but I’ve never understood this method at all. I don’t understand how that could possibly be very effective. A toothbrush seems like the obvious answer to me. For one thing, with the credit card and cloth method you’re only cleaning the removable top part of the connector, which is completely pointless if you don’t also clean the pins beneath it that are soldered directly to the board. For RGB, APU, and 1CHIP models I suppose the credit card method may be all right, since you can’t just lift the connector off on those. But a toothbrush just seems like a far better method to me. You need to use serious elbow grease when cleaning these things, and there’s no way to put the kind of force necessary behind your scrubbing if you’re just using a credit card wrapped in cloth.

Of course, rather than clean it, it’s faster to just grab a known working cartridge slot connector to test the system quickly. Keeping one handy saves time.

It's pointless only cleaning the removable top part of the cartridge connector if you don't also clean beneath. How would you possibly clean a system like this with the credit card method?

It’s pointless only cleaning the removable top part of the cartridge connector if you don’t also clean beneath. How on earth could you possibly clean a system like this with just the credit card method?

Cleaning beneath the connector is very important. If someone spilled something on the console long ago, you have to consider where gravity would have taken it. Soda spilled on top of the console wouldn’t have just sat on the top removable piece of the connector for all those years, so it’s rare to find much corrosion on the removable part. Any liquid spilled on top of the system would have run down through the connector and settled on the pins beneath. That’s why you tend to find rust and corrosion on these pins. Sometimes they look all green, like the Statue of Liberty. I scrub these with a brass brush to remove any corrosion, then clean them off with a different toothbrush and some cotton swabs. Deoxit is also good to use here.

Knowing how gravity works allows you to predict this before you even fully disassemble the console.

Knowing how gravity works means this kind of result is predictable.

At this point you can test the system. If it works, great. You’re done. But the premise here is that these simple things usually don’t work. Most consoles don’t have so much corrosion, so, while cleaning is always a good idea for sanitary reasons, it rarely actually fixes anything. Ordinary dust and dirt won’t stop the console from reading games. So let’s move on to the next step in my flowchart.

If you hold the reset button on a working console while powering it on with a game inserted, you get a black screen until you release the button. The idea here is that if the reset button is very dirty (again, think spilled soda) then it can be stuck in the activated position, causing the same symptoms as if it were actually being held down. I’ve never actually seen this personally, but it’s an explanation that makes a lot of sense to me, so it has a place in my flowchart and I always first try cleaning the reset button with a toothbrush and a bit of alcohol. If it seems sticky I temporarily desolder and remove it just for testing. It never turns out to be the culprit, but it’s pretty quick to remove so it’s not much of a waste of time.

C62 and the reset button.

C62 and the reset button.

C62 is a small 2.2µF capacitor right above the CIC chip, near the reset button. I’m told that if this is bad it has basically the same effect as holding the reset button down, resulting in a black screen on all games. Again, I’ve never actually come across a system where this had happened, but it’s an easy thing to replace, so I sometimes try replacing it if it looks funny. It has never fixed anything for me though.

I’ve seen this next thing once and only once. Since it happened once though, it does have a place in my flowchart, since I suppose I could come across it again.

I flip the board upside down and do a visual and tactile check of the solder joints on the bottom of the cartridge slot. When I say “tactile” what I really mean is that I press on them one at a time with my fingers to see if they’re cracked. It doesn’t hurt to quickly reflow them all. It almost never fixes anything, but it can help you eliminate the cartridge slot completely as a possibility. If you are an insane person you can get a multimeter, connect the top removable connector, and then check each pin on the bottom of the board for continuity with the corresponding pin inside the removable connector. This is a colossal waste of time though and you should only do this if you are a masochist. Even with a third hand tool, you’ll nudge the board constantly, your hand will slip, you’ll drop one of the probes, you’ll lose count of which pin you were at and have to start over and you will want to off yourself in no time. Besides, you really don’t need to test. It’s never the cartridge slot that causes these issues. When it comes to the cartridge slot, if everything looks good, it is good. The one time I had a system where this sort of thing was an issue, the solder joint was so badly cracked on the underside of the board I could wiggle it with my finger. If something is wrong it will be obvious.

Next is to check for broken traces. There are no shortcuts here. You just need a jeweler’s loupe and a lot of time on your hands. What I’ve learned from experience though is that you shouldn’t waste your time on this step unless you have good reason to suspect there will, in fact, be some broken traces. Basically that means if you have a system that had liquid damage or was in a very damp, wet, humid, or dirty environment you may want to spend some time looking at it carefully under magnification. So if you open it up and find lots of rust or dead bugs, it may actually have some broken traces. But if you open it and it’s nice and clean, don’t waste your time. Unless, of course, someone else worked on it prior to you. If that’s the case, you should absolutely check for broken traces, scratches, lifted solder pads, and that sort of thing, since you never know what the last guy may have done to it.

If the system is an SHVC model, yes, you can try swapping out the sound module. Some games will give a black screen if the sound module is disconnected or bad. But many games actually load to the first screen and freeze when the sound module is bad or disconnected, so if you’re using a game like that and you get a black screen, don’t waste your time, since it’s not the sound module. An Everdrive will load and display the contents of your SD card even with a bad/disconnected sound module. If you try to run a ROM, it’ll freeze.

An Everdrive, by the way, is something that can be very helpful when you’re not quite sure of the extent of the problem. Some systems may give a black screen on most games, but display garbled graphics on another. Still others give a black screen on 9 out of 10 games but might play one specific game just fine. Those consoles may have hope. To help understand the extent of the problem a bit better I see if it’ll read an Everdrive. If it reads the Everdrive and loads the burn-in test rom, I run it and see what it says. These black screen systems may not read any retail games, but sometimes they do read the Everdrive, though it doesn’t always actually load up fully. It often crashes when trying to display the contents of the SD card. But if it does load and I can get the burn-in test rom to run, it usually is very straightforward and simply says, “CPU —— FAIL”. That’s about as clear-cut an answer as it gets. Almost all the failures are CPU-related, but occasionally you do see some VRAM problems. Those are nice since you can easily grab the VRAM from another console. There’s also plenty of space between the pins so soldering them in is easy. But I’ve only seen bad VRAM two or three times and those had all been worked on previously. I don’t think the VRAM is typically prone to failure. Normally it’s a CPU problem.

At this point the only thing left is to replace the CPU. That’s not as hard as it sounds if you have hot air rework equipment. It’s very easy to remove the old CPU, but you do need to be moderately good at soldering to put in the new one. I usually end up with a few solder bridges at the end that need to be fixed. The hardest part though is locating a good CPU. The reason I have dozens of dead black screen SNES boards is because I have no good CPUs to put in them. Most, I’m sure, would work fine with a new CPU, but the trouble is that there’s nowhere to get them. I found a few IC dealers online that claim to have a small quantity in stock, but they are asking such high prices it would actually be cheaper to buy working SNES consoles for the CPUs than to buy from those bloodsuckers. When I get really badly water-damaged or otherwise screwed-up boards I take the CPUs. Sometimes they’re bad, too. But occasionally they’re good and I can revive one dead system from my stack. It always feels good. Plus I end up producing some unique SNES consoles like 1990 SHVC boards equipped with the later (and much more resilient) “S-CPU B”, which was normally only found in the GPM-02, RGB, and APU motherboard revisions.

Don't worry. I didn't cannibalize a working RGB board. It had been eaten up by roaches and was totally beyond repair with broken traces all over and the solder mask peeling up on the back.

Don’t worry. I didn’t cannibalize a working RGB board. It had been eaten up by roaches and was totally beyond repair with lots of broken traces and the solder mask peeling up all over the place.

Maggots? In my SNES?

It's more likely than you think.

It’s more likely than you think.

No, don’t worry, this isn’t my personal console. I got this one on eBay. Mine, of course, is immaculate, as you would expect. Incidentally, buy only from me or else this is the kind of thing that’ll show up at your doorstep after shopping online.

But wouldn’t you know it? This disgusting pile of filth and disease worked fine after I spent several hours washing it. I had to replace the capacitors, but otherwise it was fine. It’s aggravating that horrific-looking systems like this survive despite such neglect and abuse and yet so many well-cared for pristine-looking systems stored in safe and clean conditions by responsible, civilized people just die for no good reason.

DSCF2842

DSCF2843

DSCF2851

DSCF2848

DSCF2847

DSCF2846

DSCF2845

Unusual original Nintendo 3DS motherboard revision: CTR-CPU-40

DSCF9148

I received a 3DS console today that had been cracked in half at the hinge. As I opened it up to remove the motherboard I immediately noticed that the tiny little IR board that normally connects to a plug next to the P7 connector was missing. The IR module on this motherboard was integrated and not removable. Also strange was the fact that the little piece of tape used at the factory to secure the touch screen connector was black, rather than the typical white. I’ve seen a few boards with black tape rather than white, but in the past I always assumed this was because they had already been worked on before I received them and the last technician had used black tape. Now I know I was probably wrong. This was an entirely new motherboard revision.

The back of the board

The back of the board

Integrated IR

Integrated IR

There are some minor yet consistent differences I’ve noticed from one console to the next, such as the color of the mainboards, color of screws, slight variations in the labeling on the WiFi board, and the fact that most special edition consoles and consoles bundled with a game have the charge ports soldered much more securely to the board than the original black/red/blue models. Normally, however, the motherboard itself is basically the same. This is different from those types of minor variations because it’s a completely different motherboard revision from what I’ve seen before. Though it’s not something I normally pay attention to, I don’t think I recall ever seeing anything other than CTR-CPU-01 and the occasional CTR-CPU-20 boards.

Big blobs of solder secure the charge port in place, unlike the weak connection in earlier models

Big blobs of solder secure the charge port in place, unlike the weak connection in earlier models

The label on the WiFi daughterboard differs slightly from most models, but the board itself is the same DWM-W082 as all 3DS consoles.

The label on the WiFi daughterboard differs slightly from most models, but the board itself is the same DWM-W082 as all 3DS consoles.

In any case, this board does look more or less the same as any other model besides the fact that it has integrated IR and some silver screws in a few locations that normally have black screws. The color of the screws does differ from model to model, but I’ve never seen silver screws in these locations before. It’s fairly common for the external screws for the housing to be silver on special edition or bundled consoles, but I’ve never seen anything other than black for the screws beneath the SD card slot. Additionally, some special edition and bundled consoles have only two, rather than three, screws securing the L button in place and only three, rather than four, screws for the R button. This console follows that pattern but it also replaces the normal black screws for the shoulder buttons with silver ones.

Silver, rather than black, screws beneath the SD card slot.

Silver, rather than black, screws beneath the SD card slot.

Silver, rather than black, screws for the shoulder buttons as well

Silver, rather than black, screws for the shoulder buttons as well

Unfortunately, the previous owner used super glue in a misguided attempt to repair the cracked housing and even glued the battery cover in place, leaving no possibility of salvaging it. But the serial number sticker inside was still legible:

DSCF9143

For now I’m keeping this board. I put it inside one of my own consoles and sold the motherboard it replaced. I’ll probably keep it around for a while to tinker with and maybe I’ll eventually sell it.

Unresponsive 3DS face buttons?

This is the same console owned by the blighted mudcrab whose shoulder buttons I had the pleasure of cleaning previously.

This is the same console owned by the blighted mudcrab whose shoulder buttons I had the pleasure of cleaning previously.

While unresponsive shoulder buttons are far more common, sometimes the face buttons of a 3DS or other console become sticky or unresponsive. If the button works when pressed very hard but not when pressed lightly, it’s almost certainly due to dirt accumulation. If the button feels sticky or jammed, it’s most likely because there’s dirt built up around and beneath the plastic buttons, as in the above photo where thick rings of filth have built up around the circumference of each button. If the button doesn’t feel jammed but it’s not as clicky as it once was, it may be due to dirt under the conductive pads on the motherboard. In either case, it’s necessary to remove the motherboard from the housing (or at least remove the screws securing it in place and flip it over, if you’re in a hurry, like I was).

Here's the rubber pad between the plastic buttons and the contacts on the motherboard. Doesn't look too bad, does it?

Here’s the rubber pad between the plastic buttons and the contacts on the motherboard. Doesn’t look too bad, does it?

But peel it away to reveal a cache of shit and grease.

But peel it away to reveal a cache of shit and grease.

Remove the buttons one by one and clean the slots. Toothpicks help.

Remove the buttons one by one and clean the slots. Toothpicks help.

Clean the buttons, too. As you can see, they're usually even dirtier than the slots in which they sit.

Clean the buttons, too. As you can see, they’re usually even dirtier than the slots in which they sit.

Of course, while you’re at it you should also clean the D-pad and power buttons. It’s the same nauseating process as for the ABXY buttons, so I didn’t bother photographing them. When you have to disinfect your camera after each part of the process, you’ve got a strong incentive only to photograph the most essential steps.

Don’t close up your console yet. The most important part is to clean the contacts on the motherboard. If you’re a particularly depraved slimebucket—or if the console has suffered liquid damage—you should clean beneath the contacts as well.

As with most things, these contacts don't look too bad from afar.

As with most things, these contacts don’t look too bad from afar.

But look more closely and you'll be horrified.

But look more closely and you’ll be horrified. We need to clean this sludge off with isopropyl alcohol and a cotton swab.

For the worst cases you will need to clean beneath the contacts as well. Mainly this is only necessary when there was liquid damage, but in this particular case the owner was such a slovenly clodhopper that there was a horrifying amount of dirt underneath the contacts even in the absence of anything else that looked like liquid damage.

You can peel the contacts up with a toothpick, but I actually find it easier to use my fingernail. As long as you’re careful, you can just stick them back down on the board when you’re finished cleaning. The adhesive is very strong, so it can be reused. However, if you do accidentally destroy the contacts you can replace them either from another motherboard or by buying replacements on eBay or Aliexpress for about $2, so there’s no great risk involved here. Just don’t scratch the motherboard.

It's amazing the D-pad worked at all with this level of accumulation.

It’s amazing the D-pad worked at all with this level of accumulation.

When cleaning it's fine if you don't remove 100% of the dirt.  It's not necessary to be perfect.  In this case the contacts are clean enough to restore completely normal functionality even though there is still a small amount of stubborn dirt left that I couldn't remove.

When cleaning it’s fine if you don’t remove 100% of the dirt. It’s not necessary to be perfect. In this case the contacts are clean enough to restore completely normal functionality even though there is still a small amount of stubborn dirt left that I couldn’t remove.

And that’s it. If people weren’t such swine none of this would be necessary.

Unresponsive 3DS shoulder buttons?

Well, have maybe you're a swamp dwelling slob, like the previous owner of this console.

Well, have maybe you’re a swamp dwelling slimelord, like the previous owner of this console.

The above is about average for consoles I receive. I’ve seen much worse, but it never ceases to surprise me how much dirt can accumulate inside consoles that look to be in decent cosmetic condition externally. This is the first time I had the idea to actually photograph it though. I doubt most people realize how much material gets transferred from their hands to the console and becomes trapped inside when they fail to wash their hands before playing.

I always clean beneath the shoulder buttons before selling a used console. I used to only do this for liquid-damaged consoles, but I’ve noticed it’s often necessary even on consoles that look like they’ve been taken care of responsibly. So now I don’t even bother testing the shoulder buttons first to see if they need it. I just assume they do and clean them.

Unresponsive shoulder buttons are almost always due to dirt accumulation. It’s really amazing what slobs people are. Fortunately, cleaning the shoulder buttons is very quick and easy, so even destitute mud farmers like the people who let this happen to their consoles can fix it themselves.

The left and right sides are pretty similar, so I only took photographs of the right side to show the process.

This is what we will be contending with.

This is what we will be contending with on the right side.

The left is not much better.

The left is not much better.  


First we remove these four black screws. On some consoles there will be only three.

First we remove these four black screws. On some consoles there will be only three.

Now we life the plate off and set it aside.

Now we life the plate off and set it aside.  

Next we life off this black plastic piece.

Next we life off this black plastic bracket.  

The button is held in place by a peg and a spring. Carefully remove them.

The button is held in place by a peg and a spring. Carefully remove them.

This would be the moneyshot.

This would be the moneyshot.

The best way to clean is with isopropyl alcohol. Not only does it make removing even tough dirt easy, it also eliminates most odors, which may be important if there’s liquid damage. You can do a good job with just a combination of a toothbrush, toothpicks, and some cotton swabs. Obviously you’ll want to focus your cleaning on the recess in which the plastic button sits, but you should also clean the button itself. If you’ve noticed that your shoulder buttons are unresponsive and don’t make as much of an audible “clicking” noise as they once did when you press them, cleaning them can sometimes help with that

Now we clean and dry the left side...

Now we clean and dry the left side…

and the right side.

and the right side.

While you have the console open, it’s also a good idea to clean out the area beneath the SD card slot and the slot in which the stylus is stored.

Remove the four silver screws that secure the stylus holder and SD card slot cover in place.

Until you open it up to check, you would never suspect how much dirt can be trapped in these areas.

Remove the four silver screws that secure the stylus holder and SD card slot cover in place.

Remove the four silver screws that secure the stylus holder and SD card slot cover in place.

Disgusting.

Disgusting.

Much better.

Much better.

Reassembly is easy as long as you haven’t lost anything along the way.

Make sure these two nuts are in there. The four screws on the battery cover screw into these.

Make sure these two nuts are in there. The four screws on the battery cover screw into these.

First, place the button into the recess.

First, place the plastic part of the button into the recess.

Then insert the peg...

Then insert the peg…

...and the spring.

…and the spring.

Now we can insert the button itself.

Now we can insert the button itself.

Next we replace the black bracket on top of the button. The ribbon cable for the button goes through a slot in the bracket.

Next we replace the black bracket on top of the button. The ribbon cable for the button goes through a slot in the bracket.

Replace the serial number plate and screw it back in. Take note that no screw goes in the upper left corner.

Replace the serial number plate and screw it back in. Take note that no screw goes in the upper left corner.

Here's what the left side should like like in the end.

Here’s what the left side should like like in the end.

The finished, disinfected product.

The finished, disinfected product.

If I get around to it I might write about how to repair most cases of sticky/unrepsonsive face buttons next. If I get around to it.

Black and pink Nintendo 3DS made of spare parts

black and pink 3ds 02
I repair a lot of 3DS consoles, mostly for fun. But unfortunately I also fail to repair a lot of 3DS consoles. For every 10 consoles I repair, there may be two or three that get tossed into the graveyard box. Eventually, I accumulate enough parts in the box to assemble a working console out of them.

Recently I was surprised to find that I had a good upper LCD, speakers with a good ribbon cable, and a few camera modules. I always have a surplus of lower screens and touch screens for some reason, so I had what was more or less a full console in individual parts. I decided that I would try once again to repair a heavily corroded motherboard that I had given up on recently. Fortunately it turned out all it needed was some elbow grease. Nothing was permanently damaged from the liquid it had been exposed to.

Unfortunately, I didn’t have a full housing set. I didn’t want to wait though until enough housing fragments found their way into my spare parts box, so I combined two different colors into what turned out to be what I think is a very sharp-looking console. Even though there’s only two colors, the parts actually came from at least four or five different consoles with varying degrees of wear and tear. Since it was assembled from parts that I had rejected in the first place as unsuitable for individual resale, I didn’t expect it would turn out quite as nice as it did.

3ds parts graveyard boxblack and pink 3ds 01black and pink 3ds 03black and pink 3ds 04black and pink 3ds 05black and pink 3ds 06

Frankenstein 3DS XL (my adventure in housing and LCD replacement)

When I saw this I knew saving the console was worth my time.

I bought this console with no information about it other than a picture. When it arrived and I saw this I knew saving the console was worth my time. God, I love eBay.

So Halloween just passed and I’ve graverobbed together a nice GW3DS compatible 3DS XL for myself out of two broken consoles. I had first bought a console with a broken hinge, thinking I might fix it. However, I quickly realized that, if I could play my cards right, I might save a bit of money and a whole lot of time by combining two broken consoles together to make one functional console, instead of buying replacement parts separately. The other reason I chose to go this route is that replacement 3DS XL parts are few and far between. There are no Chinese companies that I’m aware of that make replacement housing parts yet, and the only time that official Nintendo replacement housing comes up for sale is when somebody is parting out their own console, which is not an everyday occurrence even on eBay. There are some companies that make aftermarket replacement LCD screens, but they’re usually quite expensive.

When I received the console the first thing I did was check that there was nothing else wrong with it besides the lower LCD. This was a risky move, since you never know what sorts of problems sellers will leave undisclosed on eBay auctions. They may mention one thing that’s wrong with the console but neglect to mention several other larger issues. Fortunately, when I got the above console the only thing wrong with it was that the lower LCD had some slight damage that caused those vertical lines in the picture. There were also cracks in the front housing. Luckily the uupper housing was not broken so I didn’t have to go through the trouble of rolling the ribbon cables through the hinge. I took a good lower LCD and digitizer from another console I had purchased with smashed up housing and bought a replacement front housing section for $15.

3ds xl lower lcd3ds xl replacement front housing

The first step, of course, is disassembly. The best method, by the way, to remove those two little rubber things on the bottom of the console without damaging them is to use a sewing needle to pry them up.
DSCF4154

3DS XL disassembly is only very slightly different from a normal 3DS. Once you remove the battery cover, battery, and back housing the motherboard is revealed.
3ds xl motherboard

We then remove all those little tiny screws on the right, left, and bottom center of the board. There are 10 in total. We also remove the two very long screws that hold the analog stick control mechanism in place. There’s a round, papery thing beneath the analog stick control mechanism that you’ll want to put aside so it doesn’t fall out and go missing. You also need to remove the WiFi board (it pulls right off) and disconnect the antenna cable from it. Finally, disconnect the bottom LCD and digitizer, the speakers, and camera ribbon cables from the motherboard. Use your fingernail to open up the clips and gently pull the ribbon cables out.

Now we can lift the motherboard free of the lower housing.

Now we can lift the motherboard free of the lower housing.

The top LCD ribbon cable is still connected in the upper right of the above picture. Disconnect that. Now the motherboard is completely free.

This is the ugly, cracked piece of the housing that I wanted to replace.

This is the ugly, cracked piece of the housing that I wanted to replace.

To replace the front section of the housing it’s necessary to open up the top housing. Remove the four square rubbery pads surrounding the top screen. Again, if you use a sewing needle for this you can probably manage to remove them without any damage so that you can later re-use them. They were already damaged on my console so I wasn’t particularly careful and ended up destroying one and losing another. Remove the four screws beneath.

Once you remove those four screws you need to push hard on the back part of the top shell. It’s hard to explain, but if you put the console on your lap with the back of it (i.e. the side with the charge port) against your torso and push forward on the top housing using your two thumbs it’ll slide upwards and off. I looked at these pictures to figure it out at first, but contrary to what the photographer writes, you definitely don’t need to use a screwdriver or anything else to pry it open. You can easily do it with just your thumbs. You push forwards, not upwards, and it slides off.

Here's the big mess I made out of two consoles. It all works out in the end though.

Here’s the big mess I made out of two consoles. It all works out in the end though.

I’m not proud to say it but I couldn’t figure out how to slide the left hinge inside of the top housing in order to cleanly separate the top and bottom sections of the console. On a normal-sized 3DS you can stick a small screwdriver or a pair of tweezers into the top leftmost section of the bottom housing and push the hinge inside the upper housing, allowing you to separate the two halves of the console. I couldn’t figure out how to do this for the 3DS XL though. So, in the end, I used a pair of pliers to crack open the upper left corner of the lower housing since it was already cracked a small bit. This revealed the hinge. I then pushed it into the top housing using a small screwdriver. This allowed me to separate the two halves. It’s not the most elegant solution, but it made no difference since I was destroying a part that was already broken anyway. Below is the hinge position that will let you separate the two halves. The hinge is in the same position in both photos; they’re just taken from two different angles.

Hinge pushed inside the upper housing.Second angle.

Once separated we simply slip the ribbon cables and WiFi antenna cable out through the slit in the original lower housing and pull them through. We then slip them into the slit in the replacement housing.

Top screen assembly installed in the replacement lower housing.

Top screen assembly installed in the replacement lower housing.

Before replacing the back of the top housing make sure the 3D slider is in place. It’s very likely to fall off. Also make sure the speakers are in place. When you’re ready to replace the back section of the top housing make sure you push the hinge back inside the lower housing. When you first push the hinge into the lower housing it will slide in and feel like it’s in place properly, but it most likely isn’t. Don’t be fooled! You need to push it quite hard once more after that and will go in a bit farther so that it’s nearly completely hidden inside the lower housing. Here are comparison images of the hinge in different positions:

Hinge open. Top half can be separated from lower half when in this position.

Hinge open. Top half can be separated from lower half when in this position.

Hinge not fully inside lower housing.

Hinge not fully inside lower housing.

Hinge fully inside lower housing. Halves cannot be separated. The console will now "click" open and closed like normal.

Hinge fully inside lower housing. Halves cannot be separated. The console will now “click” open and closed like normal.

Now you can replace the back part of the top screen housing. Just push the two pieces together. It’ll click into place. At this point reassembly is just the opposite of disassembly. There are guides for the ordinary 3DS and the 3DS XL isn’t much different. I would recommend that, before closing the console up, you test it by simply holding the battery in place, flipping the motherboard over, and pressing the power button with your finger.
DSCF4346

If you hear a popping noise then double check that both screens are properly connected. Also check for debris on the connectors. You don’t need to connect everything to do the test. You just need both LCDs connected. You can leave the WiFi module and analog stick disconnected when testing and the console should still power on.

Once I confirmed that everything was connected properly, I screwed the thing back together and gave it a test. I had noticed before the repair that there were parental controls on the console because when I had tried to format it I got the following screen:

oh no! what i do now?

oh no! what i do now?

The last two times I bought a locked 3DS console on eBay I had to call Nintendo and pretend to be a morbidly forgetful parent who not only forgot his PIN but also the answer to his secret question in order to get a master code. Well, that was all before neimod cracked parental controls earlier this year. No more embarrassingly bad acting! This time I was able to remove the parental controls easily and quickly in my own home. Now all is right in the world. Eventually I’ll get around to replacing the battery cover and the top housing since they’re scuffed up pretty damned badly. But for now I’m satisfied with the console being 100% functional and Gateway compatible. I put my own parental controls on it to make sure I don’t accidentally update it!

3ds xl repaired

All in all, the two consoles and the replacement housing piece probably cost me about $180 so it’s not like I saved much money. I could’ve bought a brand-new 3DS XL from 2012 with firmware ~4.3 for not much more than that. But it’s so much more fun and satisfying playing a console when you know you’re the one who saved it from the trash bin.

Extracting Wii save files from a BootMii NAND dump

My water-damaged Wii. Believe it or not, this image has a happy ending.

My water-damaged Wii. Believe it or not, this image has a happy ending.

So other than all my furniture and my apartment itself one of the various items that was destroyed in Hurricane Sandy was my Wii. Replacing the hardware is easy since a Wii is only about 60 to 70 USD these days and will presumably just continue to drop in price since the Wii U came out. The thing that’s impossible to replace is the save data. That’s why I wanted to see if there was some way of recovering my save data and copying it to my replacement Wii.

My Wii console, AV cables, and power brick were destroyed. My controllers and WiiMotes were in a box on a high shelf so they were fine. This includes a Gamecube controller, which I found out was necessary for this process.

My place was not safe to enter for months and still isn’t. That doesn’t mean that I didn’t have a chance to retrieve some stuff though. I took the Wii, placed it in some bubble wrap, and put it in a box that went straight to a storage facility along with everything else that was in the apartment.

It was just about a week ago that I had my first opportunity to see if it had been damaged. I disassembled it to check and found that it was absolutely covered in rust on the inside. I went ahead and tried cleaning it up a bit with cotton swabs and some alcohol and actually succeeded in getting it to boot. Unfortunately, I didn’t have a WiiMote with me at the time so I turned it off. That was the last time it ever boot normally.

Every time I tried to boot it afterwards it would show the green LED, the blue LED on the front panel would flash once, and the fan would spin up, but there would be no audio or video on the TV screen and no WiiMote would sync to it. The TV did detect a signal but the screen would just stay black.

Fortunately, I had Priiloader installed on it. I held the reset and power buttons at the same time to boot to Priiloader. I inserted an SD card prepared with Bootmii and used the option in Priiloader to launch Bootmii as IOS (since I hadn’t been able to install it as boot2 when I first got the Wii). I needed to use the Gamecube controller for this since no WiiMote would sync.

Once in Bootmii I made a NAND backup. It was from this backup that I was able to extract my saves. I used ShowMiiWads to extract the files from the nand.bin. I was then pointed in the right direction by this thread on WiiBrew. In the “title” directory of the extracted NAND dump there’s another directory called “00010000” with a bunch of directories inside containing the saves for each game. I copied all of these directories into a folder called “savegames” on the root of my SD card.

Once copied, I added “00010000” to the beginning of the name of each folder that I copied to the “savegames” folder. Then I moved the files inside the “data” and “content” folders into their respective parent directories.

For example: SDroot://savegames/00010000534e5445/

Inside the “00010000534e5445” folder are the actual save files such as “save.dat” and “banner.bin”. I’m not sure if the “title.tmd” files from the “content” folders are necessary, but I put them in there anyway. This whole process of dragging and dropping was a bit of a pain in the neck because I had saves for something like 30 different games.

I then used Save Game Manager GX from this link on the Wii to install the save files from the SD card to the Wii. It took many attempts because I kept having to try different versions of the program since I kept getting one error or another. This is the one that worked for me. Of course, you do have to already have a save game on the Wii for each save you want to restore. So I just started up each game and made a save before trying to restore my saves from the old Wii.

Ultimately I was able to restore somewhere in the area of 200 gameplay hours worth of save data to my replacement Wii from the old one. It did take me a few hours of research and trial and error to figure out how to accomplish this, but I think it was worth it, especially considering that there’s nothing much to do around here while I wait for the co-op board to get off their asses and hire someone to do repair work. They won’t let us hire our own people. Pfttt…

For the record, I think the problem with the water-damaged Wii is that, though the motherboard itself is fine, either the Bluetooth module, the WiFi module, or both were damaged by the water. The DVD drive may also be bad. I read that a Wii will boot properly without a DVD drive, but it will refuse to boot if either the Bluetooth or WiFi module is damaged or missing. This means the system could actually be fixed if I replaced those two boards but I don’t think it’s worth it now that I have a replacement Wii and my save games so I’ll probably just see if I can sell it on eBay. The reason Priiloader worked, I suppose, is that it must load before the Wii checks to see if the BT or WiFi modules are damaged.